4.3. Valve sizing problem

Sizing is required for a **globe valve** under the following conditions:

piping line

nominal diameter of the line: DN = 65 mm

liquid stream

olive oil, with a density $\rho = 920 \text{ kg/m}^3$ upstream pressure of the valve: $P_1 = 4.5 \text{ atm}$ downstream pressure of the circuit in which the valve is inserted: $P_3 = 1.6 \text{ atm}$ downstream pressure of the valve P_2 as given from the formula $\Delta P = (P_1 - P_2) = 35\% (P_1 - P_3)$ vapor pressure: $P_v = 0.003 \text{ atm}$ nominal flow rate in the range: $\dot{V} = 4.5 \div 6.5 \text{ L/s}$ liquid critical pressure ratio factor: $F_F = 0.956$

valve

The manufacturer provided the following Table for a **Burkert 2013 globe valve**:

$K_{vn} (m^3(H_2O) / h bar^{1/2})$
2.7
4.0
7.1
12.0
18.0
34.0
48.0
64.0

Cvn=1.16 Kvn

The intrinsic characteristic can be: VA1: equal percentage VA2: linear VA3: quadratic

The **rangeability** is always r = 30.

Questions

- 1. Calculate the **flow coefficient** C_v for the above conditions
- 2. **Size the valve** for the problem, choosing the one with the most appropriate DN and intrinsic characteristic
- 3. Plot the **intrinsic characteristic**

Next, you are prompted to enter the sized value in a circuit, taking ΔP_n equal to the original value (P₁ - P₂) and considering an user's equipment pressure drop:

 $\Delta P_0 = 2.9$ atm

- 4. How much is the authority V?
- 5. Discuss if the calculated value for the authority V is consistent or not with the inherent characteristic previously chosen under the point 2)
- 6. Calculate \dot{V}_n
- 7. How much is the flow rate $\dot{V}_1(h)$ which passes the value for $h_1 = 0.4$?
- 8. How much is the actual pressure drop across the value ΔP_{v1} for $h_1 = 0.4$?
- 9. What is the **relative stroke** h_2 that allows a flow rate $\dot{V}_2 = 155$ gal(US)/min passing through the valve?
- 10. Calculate and plot the **flow curve**, and then check the occurrence of **cavitation**